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Abstract—Accurate labeling of phase connectivity in distri-
bution systems is important for maintenance and operations
but is often erroneous or missing. In this paper, we present
an algorithm to identify which smart meters must be in the
same phase using a hierarchical clustering method on voltage
time series data. Instead of working with the time series
directly, we apply the Fourier transform to represent time
series in their frequency domain, remove 98% of the Fourier
coefficients, then cluster the remaining coefficients to estimate
which meters belong in the same phase. We validate results by
verifying they do not change phase in time and by comparing
our results to available network-distribution data.

Index Terms—Phase identification, clustering, Fourier se-
ries, Fourier series compression

I. INTRODUCTION

Managing an electricity distribution network efficiently

requires accurate phase connectivity models [18]. How-

ever, electricity companies usually do not have accurate

information of phase connectivity and often require the

use of measurement-based phase identification methods.

[8].

To deliver high-voltage power from the generation

station to customers, voltage in the primary distribution

circuit is stepped down at a distribution substation. Then

through feeders electricity is distributed to transformers.

In North America, power is stepped down again from

transformers and distributed to the customers using a three-

phase system [18]. Which phase is used for the customers

is often not recorded, and therefore creating a phase

identification problem if phase connection information is

required for network management tasks.
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There are many ways in research to tackle this identifi-

cation problem:

Micro-synchrophasors - One can use a micro-

synchrophasor to measure voltage magnitude and phase

angle of a meter [19]. The higher the correlation between

the voltage magnitude of the substation and that of smart

meters, the more accurate the phase labelling. To complete

the identification, signal generators are set up at the

substations and signal discriminators at the smart meters to

accurately identify the phase. This method is quite accurate

but expensive as it requires deployment and maintenance

of additional equipment and human resources.

Integer Programming algorithms ( [2], [3], [7], [22]) -

Phase connection of smart meters are represented as binary

variables, then integer linear programming methods are

used to determine the most-likely phase network. However,

this approach requires a new variable for every new meter,

making the problem computationally intensive, especially

for feeders with thousands of meters.

Correlation-based method ( [14]–[16]) - Data is first

collected over time from the smart meters to be identified.

The correlation coefficient is then calculated using voltage

time series between two smart meters – the closer a coef-

ficient is to one, the more likely the pair of smart meters

have the same voltage pattern and therefore the same

phase. The correlation coefficients are then transformed to

a distance measure as input to a clustering algorithm. The

method is logical and seems promising. However, based

on results from unpublished research by a project team at

Langara College (personal communication), when applied

to the data set in this research, this method suffers from

issues with a number of performance criteria that we have



identified and discussed below.

Constrained k-means clustering - Voltage time series

data is first normalized using standard deviation, then

principal component analysis is applied to reduce the

data’s dimension. A k-means clustering algorithm is then

used to cluster the smart meters. The phase of each cluster

is then identified by solving a minimization problem [9],

[14], [18].

Other phase identification methods proposed include the

use of supervised learning models or different types of

clustering algorithm, such as spectral clustering [4]–[6],

[10], [11], [17], [20], [21].

In this research, we will take a new approach in the

phase identification problem. The central idea is to extract

as much information as possible from the voltage time

series using a Fourier series compression process. A hierar-

chical clustering routine is then applied on the compressed

data to produce accurate identification.

II. RESEARCH DATA SET

For this research, we use a voltage data set that was

provided by a utility company in the United states, which

contains hourly voltage data for a number of smart meters

in the month of June and July 2021. The data set also

include the linkage between the smart meters and their

associated transformers and feeders. This information is

critical for the assessment of appropriateness and accuracy

in the clustering results.

We removed smart meters with any missing entries from

June and July 2021. We then normalize each smart meter

by dividing each voltage value by its mean. We chose two

of the smaller feeders (Feeder F with 26 smart meters and

Feeder D with 55 smart meters) to conduct our research

so that we can easily visualize and evaluate the results.

III. FOURIER COMPRESSION

Clustering the smart meters using its time series (voltage

vs time) is challenging because of its size – measurements

are hourly, so in a month of 30 days, each time series

would be in R
720. We reduce the dimension by using a

compressed Fourier series, then cluster the smart meters

using the compressed Fourier series. Figure 1 shows a high

level overview of how we use Fourier series to reduce the

dimension.

The compression is done as follows. We represent each

smart meter in its frequency domain by applying the

Fourier transform to the normalized time series. Recall

the Fourier series (sine-cosine form) representation of a

periodic function f(t) is

f(t) =
a0

2
+

∞
∑

n=1

(

an cos
(

2π

P
nt
)

+ bn sin
(

2π

P
nt
))

, (1)

where an, bn are real coefficients and P is the function’s

period. We then delete coefficients that are ‘small’ (either

by deleting frequencies that are smaller in magnitude

Fig. 1. A high level overview of how we use Fourier series to reduce the
dimension of a smart meter. We performed clustering on the compressed

Fourier series. The functions f(t) and f̂(t) are time series, where f̂(t) ≈
f(t).

than a predetermined magnitude, or by only keeping a

predetermined number of the largest terms), thus giving us

a compressed Fourier representation. We also delete the 0th

harmonic a0 because it is constant across all smart meters

due to normalization. In practice, we used 12 Fourier

coefficients to represent a month of data, thus reducing the

dimension from R
720 to R

12 (a 98% reduction in size).

As demonstrated in Figure 2, most of the Fourier

coefficients are very small, which suggests the com-

pressed Fourier series could provide a high-accuracy, low-

dimension approximation of the time series. To verify the

accuracy of the compression, we obtain an approximate

time series by applying the inverse Fourier transform

to a compressed Fourier series, and then comparing the

approximate time series to the original time series. Figure

3 shows approximate time series alongside the original

time series – the general trend of the time series is

captured, but the 12-coefficient approximation does poorly

at the spikes. As Figure 4 demonstrates, keeping more

coefficients yields better accuracy. Notice that with about

10% of the coefficients, we maintain about 90% accuracy

of the time series. Ultimately, the accuracy of the time

series is not too important, so long as the clustering results

are sensible.

The compression was done in Matlab. Given a smart

meter’s time series, we use Matlab’s fft function, which

returns complex coefficients corresponding to the Fourier

series in exponential form. We convert the complex coef-

ficients into an and bn, the real coefficients of the Fourier

series in sinusoidal form (we used get_harmonics

[1]). In practice, a time series in June would be in R
720,

corresponding to 0 ≤ t ≤ 720 hours, and so P =
720. Matlab’s fft would return the complex coefficients

c−360, . . . , c359, which we convert to real coefficients, then

only keep a1, . . . , a360 and b1, . . . , b360 (note a360 and b360
were computed from a−360 and b−360). We then compress

by using a mask to set most coefficients to zero. In practice,

we kept an and bn where n = 30, 60, . . . , 180 (these

coefficients correspond to the large frequencies in Figure

2), a total of 12 coefficients.

IV. CLUSTERING OF SMART METERS

After the dimension of the data is reduced through

a Fourier compression, distance between smart meters’
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Fig. 2. Combined magnitude of the Fourier coefficients (|an|+ |bn|) vs
frequency. Notice most of the coefficients are small. The largest amplitude
occur at the frequency 1/24; this is unsurprising because energy usage
follow daily patterns.
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Fig. 3. Original time series alongside approximate time series. The
domain was reduced to 3 days for a better viewing rectangle. The 12-
coefficient approximation does poorly at the spikes, but captures the
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Fig. 4. Error percentage is computed as
∥y−ŷ∥2

ȳ
, where y is the original

time series, ŷ is the approximate time series, and ȳ is the average of y
(note ȳ = 1 due to normalization). The 12-coefficient approximation has
16% error.

Fig. 5. Visualizing the clustering of Feeder D using June 2021 Data via
Matlab’s mdscale function.

Fourier coefficients D(X,Y ) is calculated using the tradi-

tional Euclidean distance metric:

D(X,Y ) =
1

n

n
∑

i=1

(Xi − Yi)
2. (2)

Using this distance, we cluster the set of smart meters

in Feeder F (then repeat for Feeder D) using the Ward

hierarchical clustering algorithm in Matlab [12]. Since all

smart meters should be in one of the three phases, the

number of resulting clusters is set to be three. Hence,

meters clustered together would mean they belong to the

same phase.

V. VALIDATION OF CLUSTERING RESULTS

A. Visualizing Clustering Results

A useful way to visualize the result of clustering a

multi-dimensional data set is to somehow “project” the

data set into a two dimensional space. We could then

visualize clusters with a scatter diagram in the xy-plane.

Since we are using the Euclidean distance as the basis

for clustering, a natural way to achieve this is to use

Matlab’s multidimensional scaling technique [13]. Given

the distance between points, mdscale reconstructs where

the points could be in 2D so that the distance is still

roughly preserved. In Figure 5, we see a visualization of

the clustered meters from Feeder D. Notice that there are

clear boundaries between different clusters.

Moreover, a hierarchical clustering algorithm such as

Ward would allow us to visualize the formation of the

clusters hierarchically via a dendogram (Figure 6). How-

ever, it is less useful here because the number of clusters

is required to be three.

B. Same Transformer, Same Phase

Meters within the same transformer must be in the same

phase, and thus should be clustered together. We can use

this fact to see how well our method performs – after

we cluster the smart meters, each transformer should only

have meters of a single phase. As seen in Tables I and II,

the clustering of Feeder F is almost perfect while that for
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Fig. 6. Dendogram of clustering Feeder D using data from June 2021.
Dendograms are useful to see how clusters are being formed.

Feeder D is perfect, giving us hope that this approach has

promise.

Cluster

Transformer A B C

1 1 8

2 1

3 1

4 1

5 1

6 4

7 1

8 1

9 1

10 1

11 5

Total 13 8 5

TABLE I
FEEDER F JUNE 2021 CLUSTER RESULTS GROUPED BY

TRANSFORMERS.

C. Stability Over Time

Physically, meters do not change phase over time.

Therefore, for the clustering (assignment of phase) to be

meaningful, the result should not change over time.

To evaluate results from this research, we performed

cluster analysis on two different time periods (June 2021

and July 2021) on Feeder F and D, then checked for incon-

sistent results. Any meter that changed phases (clusters)

are considered time unstable. Note that the labels from

the clustering (A B and C) are arbitrary, and so we use a

cross tabulation of the two clustering results to see how

meters are assigned in the clustering processes. Table III

shows that the clustering from June to July is stable. All

13 meters assigned to Cluster A in June are also assigned

in the same cluster in July; the same is true for Clusters

B and C.

The same can be said about the stability of clustering

Feeder D using our approach (Table IV).

Cluster

Transformer A B C

1 1

2 1

3 1

4 1

5 2

6 1

7 1

8 1

9 1

10 4

11 1

12 1

13 1

14 1

15 1

16 1

17 2

18 1

19 1

20 1

21 1

22 3

23 1

24 2

25 2

26 1

27 1

28 1

29 1

30 1

31 2

32 1

33 4

34 1

35 1

36 1

37 2

38 3

39 1

Total 39 13 3

TABLE II
FEEDER D JUNE 2021 CLUSTER RESULTS GROUPED BY

TRANSFORMERS.

VI. FUTURE WORK

While the above results look very promising, we have

not applied this approach to a larger feeder (say with over

300 meters), or to a data set with multiple feeders. We

suspect, due to the increased likelihood of data related

issues, that the results may not be as “perfect” as we have

seen so far.

To advance our research, the approach would be applied

to a larger data set with multiple feeders. The same



July

A B C Total

A 13 13

June B 8 8

C 5 5

Total 13 8 5 26

TABLE III
CLUSTERING FEEDER F - JUNE AND JULY 2021

July

A B C Total

A 39 39

June B 13 13

C 3 3

Total 39 13 3 55

TABLE IV
CLUSTERING FEEDER D - JUNE AND JULY 2021

approach should also be applied to a data set with several

months; clustering could be done month by month, or with

several months combined. Considerations should also be

given to use this approach to cluster a subset of the data

set and, after the validation process as outlined above,

using the cluster labels for the development of a supervised

learning model for the classification of other meters.

VII. CONCLUSION

In this research, we have applied a novel method of

approximating a time series with its Fourier series. We then

used hierarchical clustering methods on the dimension-

reduced data. The major application of this approach is

in the phase identification of smart meters in a network

environment.

Results from two small data sets using this approach

show significant promise as they passed two important

tests: same assignment for meters in the same transformer

and stability of assignment over time. The application of

this approach to a larger data set with multiple feeders

would therefore be a worthwhile exercise.
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